
Instruction Set
Notes on Data Addressing Modes

Rn - Working register R0-R7

direct - 128 internal RAM locations, any l/O port, control or status register

@Ri - Indirect internal or external RAM location addressed by register R0 or R1

#data - 8-bit constant included in instruction

#data 16 - 16-bit constant included as bytes 2 and 3 of instruction

bit - 128 software flags, any bitaddressable l/O pin, control or status bit

A - Accumulator

Notes on Program Addressing Modes

addr16 - Destination address for LCALL and LJMP may be anywhere within the 64-Kbyte
program memory address space.

addr11 - Destination address for ACALL and AJMP will be within the same 2-Kbyte page of
program memory as the first byte of the following instruction.

rel - SJMP and all conditional jumps include an 8 bit offset byte. Range is + 127/– 128
bytes relative to the first byte of the following instruction.

All mnemonics copyrighted:  Intel Corporation 1980
Semiconductor Group 1

Instruction Set
ACALL addr11

Function: Absolute call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The
instruction increments the PC twice to obtain the address of the following
instruction, then pushes the 16-bit result onto the stack (low-order byte first) and
increments the stack pointer twice. The destination address is obtained by
successively concatenating the five high-order bits of the incremented PC, op code
bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2K block of program memory as the first byte of the
instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label ”SUBRTN” is at program memory location 0345H.
After executing the instruction

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM location 08H and 09H will
contain 25H and 01H, respectively, and the PC will contain 0345H.

Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC10-0) ← page address

Bytes: 2

Cycles: 2

Encoding: a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
Semiconductor Group 2

Instruction Set
ADD A, <src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the accumulator, leaving the result in the
accumulator. The carry and auxiliary carry flags are set, respectively, if there is a
carry out of bit 7 or bit 3, and cleared otherwise. When adding unsigned integers,
the carry flag indicates an overflow occurred.

OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but
not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates
a negative number produced as the sum of two positive operands, or a positive sum
from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B).
The instruction

ADD A,R0

will leave 6DH (01101101B) in the accumulator with the AC flag cleared and both
the carry flag and OV set to 1.

ADD A,Rn

Operation: ADD
(A) ← (A) + (Rn)

Bytes: 1

Cycles: 1

ADD A,direct

Operation: ADD
(A) ← (A) + (direct)

Bytes: 2

Cycles: 1

Encoding: 0 0 1 0 1 r r r

Encoding: 0 0 1 0 0 1 0 1 direct address
Semiconductor Group 3

Instruction Set
ADD A, @Ri

Operation: ADD
(A) ← (A) + ((Ri))

Bytes: 1

Cycles: 1

ADD A, #data

Operation: ADD
(A) ← (A) + #data

Bytes: 2

Cycles: 1

Encoding: 0 0 1 0 0 1 1 i

Encoding: 0 0 1 0 0 1 0 0 immediate data
Semiconductor Group 4

Instruction Set
ADDC A, < src-byte>

Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the
accumulator contents, leaving the result in the accumulator. The carry and auxiliary
carry flags are set, respectively, if there is a carry out of bit 7 or bit 3, and cleared
otherwise. When adding unsigned integers, the carry flag indicates an overflow
occurred.

OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but
not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates
a negative number produced as the sum of two positive operands or a positive sum
from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B)
with the carry flag set. The instruction

ADDC A,R0

will leave 6EH (01101110B) in the accumulator with AC cleared and both the carry
flag and OV set to 1.

ADDC A,Rn

Operation: ADDC
(A) ← (A) + (C) + (Rn)

Bytes: 1

Cycles: 1

ADDC A,direct

Operation: ADDC
(A) ← (A) + (C) + (direct)

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 1 r r r

Encoding: 0 0 1 1 0 1 0 1 direct address
Semiconductor Group 5

Instruction Set
ADDC A, @Ri

Operation: ADDC
(A) ← (A) + (C) + ((Ri))

Bytes: 1

Cycles: 1

ADDC A, #data

Operation: ADDC
(A) ← (A) + (C) + #data

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 0 1 1 i

Encoding: 0 0 1 1 0 1 0 0 immediate data
Semiconductor Group 6

Instruction Set
AJMP addr11

Function: Absolute jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-
time by concatenating the high-order five bits of the PC (after incrementing the PC
twice), op code bits 7-5, and the second byte of the instruction. The destination must
therefore be within the same 2K block of program memory as the first byte of the
instruction following AJMP.

Example: The label ”JMPADR” is at program memory location 0123H. The instruction

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.

Operation: AJM P
(PC) ← (PC) + 2
(PC10-0) ← page address

Bytes: 2

Cycles: 2

Encoding: a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
Semiconductor Group 7

Instruction Set
ANL <dest-byte>, <src-byte>

Function: Logical AND for byte variables

Description: ANL performs the bitwise logical AND operation between the variables indicated
and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination
is a accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the
accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) then the instruction

ANL A,R0

will leave 81H (10000001B) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear
combinations of bits in any RAM location or hardware register. The mask byte
determining the pattern of bits to be cleared would either be a constant contained
in the instruction or a value computed in the accumulator at run-time.
The instruction

ANL P1, #01110011B

will clear bits 7, 3, and 2 of output port 1.

ANL A,Rn

Operation: ANL
(A) ← (A) ∧ (Rn)

Bytes: 1

Cycles: 1

Encoding: 0 1 0 1 1 r r r
Semiconductor Group 8

Instruction Set
ANL A,direct

Operation: ANL
(A) ← (A) ∧ (direct)

Bytes: 2

Cycles: 1

ANL A, @Ri

Operation: ANL
(A) ← (A) ∧ ((Ri))

Bytes: 1

Cycles: 1

ANL A, #data

Operation: ANL
(A) ← (A) ∧ #data

Bytes: 2

Cycles: 1

ANL direct,A

Operation: ANL
(direct) ← (direct) ∧ (A)

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 1 0 1 direct address

Encoding: 0 1 0 1 0 1 1 i

Encoding: 0 1 0 1 0 1 0 0 immediate data

Encoding: 0 1 0 1 0 1 0 1 direct address
Semiconductor Group 9

Instruction Set
ANL direct, #data

Operation: ANL
(direct) ← (direct) ∧ #data

Bytes: 3

Cycles: 2

Encoding: 0 1 0 1 0 0 1 1 direct address immediate data
Semiconductor Group 10

Instruction Set
ANL C, <src-bit>

Function: Logical AND for bit variables

Description: If the Boolean value of the source bit is a logic 0 then clear the carry flag; otherwise
leave the carry flag in its current state. A slash (”/” preceding the operand in the
assembly language indicates that the logical complement of the addressed bit is
used as the source value, but the source bit itself is not affected. No other flags are
affected.

Only direct bit addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ; Load carry with input pin state
ANL C,ACC.7 ; AND carry with accumulator bit 7
ANL C,/OV ; AND with inverse of overflow flag

ANL C,bit

Operation: ANL
(C) ← (C) ∧ (bit)

Bytes: 2

Cycles: 2

ANL C,/bit

Operation: ANL
(C) ← (C) ∧ ¬ (bit)

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 1 0 bit address

Encoding: 1 0 1 1 0 0 0 0 bit address
Semiconductor Group 11

Instruction Set
CJNE <dest-byte >, < src-byte >, rel

Function: Compare and jump if not equal

Description: CJNE compares the magnitudes of the tirst two operands, and branches if their
values are not equal. The branch destination is computed by adding the signed
relative displacement in the last instruction byte to the PC, after incrementing the
PC to the start of the next instruction. The carry flag is set if the unsigned integer
value of <dest-byte> is less than the unsigned integer value of <src-byte>;
otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator
may be compared with any directly addressed byte or immediate data, and any
indirect RAM location or working register can be compared with an immediate
constant.

Example: The accumulator contains 34H. Register 7 contains 56H. The first instruction in the
sequence

CJNE R7, # 60H, NOT_EQ
; ; R7 = 60H
NOT_EQ JC REQ_LOW ; If R7 < 60H
; ; R7 > 60H

sets the carry flag and branches to the instruction at label NOT_EQ. By testing the
carry flag, this instruction determines whether R7 is greater or less than 60H.

If the data being presented to port 1 is also 34H, then the instruction

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the
accumulator does equal the data read from P1. (If some other value was input on
P1, the program will loop at this point until the P1 data changes to 34H).
Semiconductor Group 12

Instruction Set
CJNE A,direct,rel

Operation: (PC) ← (PC) + 3
if (A) < > (direct)
then (PC) ← (PC) + relative offset
if (A) < (direct)
then (C) ←1
else (C) ← 0

Bytes: 3

Cycles: 2

CJNE A, #data,rel

Operation: (PC) ← (PC) + 3
if (A) < > data
then (PC) ← (PC) + relative offset
if (A) ← data
then (C) ←1
else (C) ← 0

Bytes: 3

Cycles: 2

CJNE RN, #data, rel

Operation: (PC) ← (PC) + 3
if (Rn) < > data
then (PC) ← (PC) + relative offset
if (Rn) < data
then (C) ← 1
else (C) ← 0

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 0 1 direct address rel. address

Encoding: 1 0 1 1 0 1 0 0 immediate data rel. address

Encoding: 1 0 1 1 1 r r r immediate data rel. address
Semiconductor Group 13

Instruction Set
CJNE @Ri, #data,rel

Operation: (PC) ← (PC) + 3
if ((Ri)) < > data
then (PC) ← (PC) + relative offset
if ((Ri)) < data
then (C) ← 1
else (C) ← 0

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 1 i immediate data rel. address
Semiconductor Group 14

Instruction Set
CLR A

Function: Clear accumulator

Description: The accumulator is cleared (all bits set to zero). No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

will leave the accumulator set to 00H (00000000B).

Operation: CLR
(A) ← 0

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 0 1 0 0
Semiconductor Group 15

Instruction Set
CLR bit

Function: Clear bit

Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can
operate on the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction

CLR P1.2

will leave the port set to 59H (01011001B).

CLR C

Operation: CLR
(C) ← 0

Bytes: 1

Cycles: 1

CLR bit

Operation: CLR
(bit) ← 0

Bytes: 2

Cycles: 1

Encoding: 1 1 0 0 0 0 1 1

Encoding: 1 1 0 0 0 0 1 0 bit address
Semiconductor Group 16

Instruction Set
CPL A

Function: Complement accumulator

Description: Each bit of the accumulator is logically complemented (one’s complement). Bits
which previously contained a one are changed to zero and vice versa. No flags are
affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CPL A

will leave the accumulator set to 0A3H (10100011 B).

Operation: CPL
(A) ← ¬ (A)

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 0 1 0 0
Semiconductor Group 17

Instruction Set
CPL bit

Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is changed
to zero and vice versa. No other flags are affected. CPL can operate on the carry or
any directly addressable bit.

Note:

When this instruction is used to modify an output pin, the value used as the original
data will be read from the output data latch, not the input pin.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction sequence

CPL P1.1
CPL P1.2

will leave the port set to 5BH (01011011B).

CPL C

Operation: CPL
(C) ← ¬ (C)

Bytes: 1

Cycles: 1

CPL bit

Operation: CPL
(bit) ← ¬ (bit)

Bytes: 2

Cycles: 1

Encoding: 1 0 1 1 0 0 1 1

Encoding: 1 0 1 1 0 0 1 0 bit address
Semiconductor Group 18

Instruction Set
DA A

Function: Decimal adjust accumulator for addition

Description: DA A adjusts the eight-bit value in the accumulator resulting from the earlier
addition of two variables (each in packed BCD format), producing two four-bit digits.
Any ADD or ADDC instruction may have been used to perform the addition.

If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag
is one, six is added to the accumulator producing the proper BCD digit in the low-
order nibble. This internal addition would set the carry flag if a carry-out of the low-
order four-bit field propagated through all high-order bits, but it would not clear the
carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-
1111xxxx), these high-order bits are incremented by six, producing the proper BCD
digit in the high-order nibble. Again, this would set the carry flag if there was a carry-
out of the high-order bits, but wouldn’t clear the carry. The carry flag thus indicates
if the sum of the original two BCD variables is greater than 100, allowing multiple
precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially; this instruction
performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the
accumulator, depending on initial accumulator and PSW conditions.

Note:

DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

Example: The accumulator holds the value 56H (01010110B) representing the packed BCD
digits of the decimal number 56. Register 3 contains the value 67H (01100111B)
representing the packed BCD digits of the decimal number 67. The carry flag is set.
The instruction sequence

ADDC A,R3
DA A

will first perform a standard two’s-complement binary addition, resulting in the value
0BEH (10111110B) in the accumulator. The carry and auxiliary carry flags will be
cleared.

The decimal adjust instruction will then alter the accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-
order two digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be
set by the decimal adjust instruction, indicating that a decimal overflow occurred.
The true sum 56, 67, and 1 is 124.
Semiconductor Group 19

Instruction Set
BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator initially holds 30H (representing the digits of 30 decimal), then the
instruction sequence

ADD A, #99H
DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The low-
order byte of the sum can be interpreted to mean 30 – 1 = 29.

Operation: DA
contents of accumulator are BCD
if [[(A3-0) > 9] ∨ [(AC) = 1]]
then (A3-0) ← (A3-0) + 6
and
if [[(A7-4) > 9] ∨ [(C) = 1]]
then (A7-4) ← (A7-4) + 6

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 1 0 0
Semiconductor Group 20

Instruction Set
DEC byte

Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00H will underflow
to 0FFH. No flags are affected. Four operand addressing modes are allowed:
accumulator, register, direct, or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH
contain 00H and 40H, respectively. The instruction sequence

DEC @R0
DEC R0
DEC @R0

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to
0FFH and 3FH.

DEC A

Operation: DEC
(A) ← (A) – 1

Bytes: 1

Cycles: 1

DEC Rn

Operation: DEC
(Rn) ← (Rn) – 1

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 1 0 0

Encoding: 0 0 0 1 1 r r r
Semiconductor Group 21

Instruction Set
DEC direct

Operation: DEC
(direct) ← (direct) – 1

Bytes: 2

Cycles: 1

DEC @Ri

Operation: DEC
((Ri)) ← ((Ri)) – 1

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 1 0 1 direct address

Encoding: 0 0 0 1 0 1 1 i
Semiconductor Group 22

Instruction SetInstruction Set
DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned
eight-bit integer in register B. The accumulator receives the integer part of the
quotient; register B receives the integer remainder. The carry and OV flags will be
cleared.

Exception: If B had originally contained 00H, the values returned in the accumulator
and B register will be undefined and the overflow flag will be set. The carry flag is
cleared in any case.

Example: The accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or
00010010B). The instruction

DIV AB

will leave 13 in the accumulator (0DH or 00001101 B) and the value 17 (11H or
00010001B) in B, since 251 = (13x18) + 17. Carry and OV will both be cleared.

Operation: DIV

(A15-8)
(B7-0)

Bytes: 1

Cycles: 4

Encoding: 1 0 0 0 0 1 0 0

← (A) / (B)
Semiconductor Group 23

Instruction Set
DJNZ <byte>, < rel-addr>

Function: Decrement and jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the address
indicated by the second operand if the resulting value is not zero. An original value
of 00H will underflow to 0FFH. No flags are affected. The branch destination would
be computed by adding the signed relative-displacement value in the last instruction
byte to the PC, after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note:

When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values, 01H, 70H, and 15H,
respectively. The instruction sequence

DJNZ 40H,LABEL_1
DJNZ 50H,LABEL_2
DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and
15H in the three RAM locations. The first jump was not taken because the result was
zero.

This instruction provides a simple way of executing a program loop a given number
of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a
single instruction. The instruction sequence

MOV R2, #8
TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output
port 1. Each pulse will last three machine cycles; two for DJNZ and one to alter the
pin.
Semiconductor Group 24

Instruction Set
DJNZ Rn,rel

Operation: DJNZ
(PC) ← (PC) + 2
(Rn) ← (Rn) – 1
if (Rn) > 0 or (Rn) < 0
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

DJNZ direct,rel

Operation: DJNZ
(PC) ← (PC) + 2
(direct) ← (direct) – 1
if (direct) > 0 or (direct) < 0
then (PC) ← (PC) + rel

Bytes: 3

Cycles: 2

Encoding: 1 1 0 1 1 r r r rel. address

Encoding: 1 1 0 1 0 1 0 1 direct address rel. address
Semiconductor Group 25

Instruction Set
INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH will overflow
to 00H. No flags are affected. Three addressing modes are allowed: register, direct,
or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7EH (01111110B). Internal RAM locations 7EH and 7FH
contain 0FFH and 40H, respectively. The instruction sequence

INC @R0
INC R0
INC @R0

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding
(respectively) 00H and 41H.

INC A

Operation: INC
(A) ← (A) + 1

Bytes: 1

Cycles: 1

INC Rn

Operation: INC
(Rn) ← (Rn) + 1

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 1 0 0

Encoding: 0 0 0 0 1 r r r
Semiconductor Group 26

Instruction Set
INC direct

Operation: INC
(direct) ← (direct) + 1

Bytes: 2

Cycles: 1

INC @Ri

Operation: INC
((Ri)) ← ((Ri)) + 1

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 1 0 1 direct address

Encoding: 0 0 0 0 0 1 1 i
Semiconductor Group 27

Instruction Set
INC DPTR

Function: Increment data pointer

Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed;
an overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will
increment the high-order byte (DPH). No flags are affected.

This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction
sequence

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and 01H.

Operation: INC
(DPTR) ← (DPTR) + 1

Bytes: 1

Cycles: 2

Encoding: 1 0 1 0 0 0 1 1
Semiconductor Group 28

Instruction Set
JB bit,rel

Function: Jump if bit is set

Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed
relative-displacement in the third instruction byte to the PC, after incrementing the
PC to the first byte of the next instruction. The bit tested is not modified. No flags
are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56
(01010110B). The instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

will cause program execution to branch to the instruction at label LABEL2.

Operation: JB
(PC) ← (PC) + 3
if (bit) = 1
then (PC) ← (PC) + rel

Bytes: 3

Cycles: 2

Encoding: 0 0 1 0 0 0 0 0 bit address rel. address
Semiconductor Group 29

Instruction Set
JBC bit,rel

Function: Jump if bit is set and clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with
the next instruction. In either case, clear the designated bit. The branch destination
is computed by adding the signed relative displacement in the third instruction byte
to the PC, after incrementing the PC to the first byte of the next instruction. No flags
are affected.

Note:

When this instruction is used to test an output pin, the value used as the original
data will be read from the output data latch, not the input pin.

Example: The accumulator holds 56H (01010110B). The instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the label
LABEL2, with the accumulator modified to 52H (01010010B).

Operation: JBC
(PC) ← (PC) + 3
if (bit) = 1
then (bit) ← 0
 (PC) ← (PC) + rel

Bytes: 3

Cycles: 2

Encoding: 0 0 0 1 0 0 0 0 bit address rel. address
Semiconductor Group 30

Instruction Set
JC rel

Function: Jump if carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC
twice. No flags are affected.

Example: The carry flag is cleared. The instruction sequence

JC LABEL1
CPL C
JC LABEL2

will set the carry and cause program execution to continue at the instruction
identified by the label LABEL2.

Operation: JC
(PC) ← (PC) + 2
if (C) = 1
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 0 1 0 0 0 0 0 0 rel. address
Semiconductor Group 31

Instruction Set
JMP @A + DPTR

Function: Jump indirect

Description: Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data
pointer, and load the resulting sum to the program counter. This will be the address
for subsequent instruction fetches. Sixteen-bit addition is performed (modulo 216): a
carry-out from the low-order eight bits propagates through the higher-order bits.
Neither the accumulator nor the data pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the accumulator. The following sequence of
instructions will branch to one of four AJMP instructions in a jump table starting at
JMP_TBL:

MOV DPTR, #JMP_TBL
JMP @A + DPTR

JMP_TBL: AJMP LABEL0
AJMP LABEL1
AJMP LABEL2
AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution will jump to
label LABEL2. Remember that AJMP is a two-byte instruction, so the jump
instructions start at every other address.

Operation: JMP
(PC) ← (A) + (DPTR)

Bytes: 1

Cycles: 2

Encoding: 0 1 1 1 0 0 1 1
Semiconductor Group 32

Instruction Set
JNB bit,rel

Function: Jump if bit is not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed
relative-displacement in the third instruction byte to the PC, after incrementing the
PC to the first byte of the next instruction. The bit tested is not modified. No flags
are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56H
(01010110B). The instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.

Operation: JNB
(PC) ← (PC) + 3
if (bit) = 0
then (PC) ← (PC) + rel.

Bytes: 3

Cycles: 2

Encoding: 0 0 1 1 0 0 0 0 bit address rel. address
Semiconductor Group 33

Instruction Set
JNC rel

Function: Jump if carry is not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed
relative-displacement in the second instruction byte to the PC, after incrementing
the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The instruction sequence

JNC LABEL1
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction
identified by the label LABEL2.

Operation: JNC
(PC) ← (PC) + 2
if (C) = 0
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 0 1 0 1 0 0 0 0 rel. address
Semiconductor Group 34

Instruction Set
JNZ rel

Function: Jump if accumulator is not zero

Description: If any bit of the accumulator is a one, branch to the indicated address; otherwise
proceed with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the second instruction byte to the PC, after
incrementing the PC twice. The accumulator is not modified. No flags are affected.

Example: The accumulator originally holds 00H. The instruction sequence

JNZ LABEL1
INC A
JNZ LABEL2

will set the accumulator to 01H and continue at label LABEL2.

Operation: JNZ
(PC) ← (PC) + 2
if (A) ≠ 0
then (PC) ← (PC) + rel.

Bytes: 2

Cycles: 2

Encoding: 0 1 1 1 0 0 0 0 rel. address
Semiconductor Group 35

Instruction Set
JZ rel

Function: Jump if accumulator is zero

Description: If all bits of the accumulator are zero, branch to the address indicated; otherwise
proceed with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the second instruction byte to the PC, after
incrementing the PC twice. The accumulator is not modified. No flags are affected.

Example: The accumulator originally contains 01H. The instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

will change the accumulator to 00H and cause program execution to continue at the
instruction identified by the label LABEL2.

Operation: JZ
(PC) ← (PC) + 2
if (A) = 0
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 0 1 1 0 0 0 0 0 rel. address
Semiconductor Group 36

Instruction Set
LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds
three to the program counter to generate the address of the next instruction and
then pushes the 16-bit result onto the stack (low byte first), incrementing the stack
pointer by two. The high-order and low-order bytes of the PC are then loaded,
respectively, with the second and third bytes of the LCALL instruction. Program
execution continues with the instruction at this address. The subroutine may
therefore begin anywhere in the full 64 Kbyte program memory address space. No
flags are affected.

Example: Initially the stack pointer equals 07H. The label ”SUBRTN” is assigned to program
memory location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer will contain 09H, internal RAM locations 08H
and 09H will contain 26H and 01H, and the PC will contain 1234H.

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC) ← addr15-0

Bytes: 3

Cycles: 2

Encoding: 0 0 0 1 0 0 1 0 addr15 . . addr8 addr7 . . addr0
Semiconductor Group 37

Instruction Set
LJMP addr16

Function: Long jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high-
order and low-order bytes of the PC (respectively) with the second and third
instruction bytes. The destination may therefore be anywhere in the full 64K
program memory address space. No flags are affected.

Example: The label ”JMPADR” is assigned to the instruction at program memory location
1234H. The instruction

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Operation: LJMP
(PC) ← addr15-0

Bytes: 3

Cycles: 2

Encoding: 0 0 0 0 0 0 1 0 addr15 . . . addr8 addr7 . . . addr0
Semiconductor Group 38

Instruction Set
MOV <dest-byte>, <src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location
specified by the first operand. The source byte is not affected. No other register or
flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and
destination addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The
data present at input port 1 is 11001010B (0CAH).

MOV R0, #30H ; R0 < = 30H
MOV A, @R0 ; A < = 40H
MOV R1,A ; R1 < = 40H
MOV B, @R1 ; B < = 10H
MOV @R1,P1 ; RAM (40H) < = 0CAH
MOV P2,P1 ; P2 < = 0CAH

leaves the value 30H in register 0, 40H in both the accumulator and register 1, 10H
in register B, and 0CAH (11001010B) both in RAM location 40H and output on
port 2.

MOV A,Rn

Operation: MOV
(A) ← (Rn)

Bytes: 1

Cycles: 1

MOV A,direct *)

Operation: MOV
(A) ← (direct)

Bytes: 2

Cycles: 1

*) MOV A,ACC is not a valid instruction.

Encoding: 1 1 1 0 1 r r r

Encoding: 1 1 1 0 0 1 0 1 direct address
Semiconductor Group 39

Instruction Set
MOV A,@Ri

Operation: MOV
(A) ← ((Ri))

Bytes: 1

Cycles: 1

MOV A, #data

Operation: MOV
(A) ← #data

Bytes: 2

Cycles: 1

MOV Rn,A

Operation: MOV
(Rn) ← (A)

Bytes: 1

Cycles: 1

MOV Rn,direct

Operation: MOV
(Rn) ← (direct)

Bytes: 2

Cycles: 2

Encoding: 1 1 1 0 0 1 1 i

Encoding: 0 1 1 1 0 1 0 0 immediate data

Encoding: 1 1 1 1 1 r r r

Encoding: 1 0 1 0 1 r r r direct address
Semiconductor Group 40

Instruction Set
MOV Rn, #data

Operation: MOV
(Rn) ← #data

Bytes: 2

Cycles: 1

MOV direct,A

Operation: MOV
(direct) ← (A)

Bytes: 2

Cycles: 1

MOV direct,Rn

Operation: MOV
(direct) ← (Rn)

Bytes: 2

Cycles: 2

MOV direct,direct

Operation: MOV
(direct) ← (direct)

Bytes: 3

Cycles: 2

Encoding: 0 1 1 1 1 r r r immediate data

Encoding: 1 1 1 1 0 1 0 1 direct address

Encoding: 1 0 0 0 1 r r r direct address

Encoding: 1 0 0 0 0 1 0 1 dir.addr. (src) dir.addr. (dest)
Semiconductor Group 41

Instruction Set
MOV direct, @ Ri

Operation: MOV
(direct) ← ((Ri))

Bytes: 2

Cycles: 2

MOV direct, #data

Operation: MOV
(direct) ← #data

Bytes: 3

Cycles: 2

MOV @ Ri,A

Operation: MOV
((Ri)) ← (A)

Bytes: 1

Cycles: 1

MOV @ Ri,direct

Ooeration: MOV
((Ri)) ← (direct)

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 1 1 i direct address

Encoding: 0 1 1 1 0 1 0 1 direct address immediate data

Encoding: 1 1 1 1 0 1 1 i

Encoding: 1 0 1 0 0 1 1 i direct address
Semiconductor Group 42

Instruction Set
MOV @ Ri,#data

Operation: MOV
((Ri)) ← #data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 0 1 1 i immediate data
Semiconductor Group 43

Instruction Set
MOV <dest-bit>, <src-bit>

Function: Move bit data

Description: The Boolean variable indicated by the second operand is copied into the location
specified by the first operand. One of the operands must be the carry flag; the other
may be any directly addressable bit. No other register or flag is affected.

Example: The carry flag is originally set. The data present at input port 3 is 11000101B. The
data previously written to output port 1 is 35H (00110101B).

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (00111001 B).

MOV C,bit

Operation: MOV
(C) ← (bit)

Bytes: 2

Cycles: 1

MOV bit,C

Operation: MOV
(bit) ← (C)

Bytes: 2

Cycles: 2

Encoding: 1 0 1 0 0 0 1 0 bit address

Encoding: 1 0 0 1 0 0 1 0 bit address
Semiconductor Group 44

Instruction Set
MOV DPTR, #data16

Function: Load data pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit constant is
loaded into the second and third bytes of the instruction. The second byte (DPH) is
the high-order byte, while the third byte (DPL) holds the low-order byte. No flags are
affected.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction

MOV DPTR, #1234H
will load the value 1234H into the data pointer: DPH will hold 12H and DPL will hold
34H.

Operation: MOV
(DPTR) ← #data15-0
DPH DPL ← #data15-8 #data7-0

Bytes: 3

Cycles: 2

Encoding: 1 0 0 1 0 0 0 0 immed. data 15 . . . 8 immed. data 7 . . . 0
Semiconductor Group 45

Instruction Set
MOVC A, @A + <base-reg>

Function: Move code byte

Description: The MOVC instructions load the accumulator with a code byte, or constant from
program memory. The address of the byte fetched is the sum of the original
unsigned eight-bit accumulator contents and the contents of a sixteen-bit base
register, which may be either the data pointer or the PC. In the latter case, the PC
is incremented to the address of the following instruction before being added to the
accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed so a carry-out from the low-order eight bits may propagate through
higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following instructions will
translate the value in the accumulator to one of four values defined by the DB
(define byte) directive.

REL_PC: INC A
MOVC A, @A + PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it will return with 77H
in the accumulator. The INC A before the MOVC instruction is needed to ”get
around” the RET instruction above the table. If several bytes of code separated the
MOVC from the table, the corresponding number would be added to the
accumulator instead.

MOVC A, @A + DPTR

Operation: MOVC
(A) ← ((A) + (DPTR))

Bytes: 1

Cycles: 2

Encoding: 1 0 0 1 0 0 1 1
Semiconductor Group 46

Instruction Set
MOVC A, @A + PC

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

Bytes: 1

Cycles: 2

Encoding: 1 0 0 0 0 0 1 1
Semiconductor Group 47

Instruction Set
MOVX <dest-byte>, <src-byte>

Function: Move external

Description: The MOVX instructions transfer data between the accumulator and a byte of
external data memory, hence the ”X” appended to MOV. There are two types of
instructions, differing in whether they provide an eight bit or sixteen-bit indirect
address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an
eight-bit address multiplexed with data on P0. Eight bits are sufficient for external
l/O expansion decoding or a relatively small RAM array. For somewhat larger
arrays, any output port pins can be used to output higher-order address bits. These
pins would be controlled by an output instruction preceding the MOVX.

In the second type of MOVX instructions, the data pointer generates a sixteen-bit
address. P2 outputs the high-order eight address bits (the contents of DPH) while
P0 multiplexes the low-order eight bits (DPL) with data. The P2 special function
register retains its previous contents while the P2 output buffers are emitting the
contents of DPH. This form is faster and more efficient when accessing very large
data arrays (up to 64 Kbyte), since no additional instructions are needed to set up
the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with
its high-order address lines driven by P2 can be addressed via the data pointer, or
with code to output high-order address bits to P2 followed by a MOVX instruction
using R0 or R1.

Example: An external 256 byte RAM using multiplexed address/data lines (e.g. an SAB 8155
RAM/I/O/timer) is connected to the SAB 80(c)5XX port 0. Port 3 provides control
lines for the external RAM. Ports 1 and 2 are used for normal l/O. Registers 0 and
1 contain 12H and 34H. Location 34H of the external RAM holds the value 56H. The
instruction sequence

MOVX A, @R1
MOVX @R0,A

copies the value 56H into both the accumulator and external RAM location 12H.
Semiconductor Group 48

Instruction Set
MOVX A,@Ri

Operation: MOVX
(A) ← ((Ri))

Bytes: 1

Cycles: 2

MOVX A,@DPTR

Operation: MOVX
(A) ← ((DPTR))

Bytes: 1

Cycles: 2

MOVX @Ri,A

Operation: MOVX
((Ri)) ← (A)

Bytes: 1

Cycles: 2

MOVX @DPTR,A

Operation: MOVX
((DPTR)) ← (A)

Bytes: 1

Cycles: 2

Encoding: 1 1 1 0 0 0 1 i

Encoding: 1 1 1 0 0 0 0 0

Encoding: 1 1 1 1 0 0 1 i

Encoding: 1 1 1 1 0 0 0 0
Semiconductor Group 49

Instruction Set
MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned eight-bit integers in the accumulator and register
B. The low-order byte of the sixteen-bit product is left in the accumulator, and the
high-order byte in B. If the product is greater than 255 (0FFH) the overflow flag is
set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the accumulator holds the value 80 (50H). Register B holds the value 160
(0A0H). The instruction

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the
accumulator is cleared. The overflow flag is set, carry is cleared.

Operation: MUL

(A7-0)
(B15-8)

Bytes: 1

Cycles: 4

Encoding: 1 0 1 0 0 1 0 0

← (A) x (B)
Semiconductor Group 50

Instruction Set
NOP

Function: No operation

Description: Execution continues at the following instruction. Other than the PC, no registers or
flags are affected.

Example: It is desired to produce a low-going output pulse on bit 7 of port 2 lasting exactly 5
cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so four
additional cycles must be inserted. This may be done (assuming no interrupts are
enabled) with the instruction sequence

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

Operation: NOP

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 0 0 0
Semiconductor Group 51

Instruction Set
ORL <dest-byte> <src-byte>

Function: Logical OR for byte variables

Description: ORL performs the bitwise logical OR operation between the indicated variables,
storing the results in the destination byte. No flags are affected .

The two operands allow six addressing mode combinations. When the destination
is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can be
the accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then
the instruction

ORL A,R0

will leave the accumulator holding the value 0D7H (11010111B).

When the destination is a directly addressed byte, the instruction can set
combinations of bits in any RAM location or hardware register. The pattern of bits
to be set is determined by a mask byte, which may be either a constant data value
in the instruction or a variable computed in the accumulator at run-time. The
instruction

ORL P1,#00110010B

will set bits 5, 4, and 1 of output port 1.

ORL A,Rn

Operation: ORL
(A) ← (A) ∨ (Rn)

Bytes: 1

Cycles: 1

Encoding: 0 1 0 0 1 r r r
Semiconductor Group 52

Instruction Set
ORL A,direct

Operation: ORL
(A) ← (A) ∨ (direct)

Bytes: 2

Cycles: 1

ORL A,@Ri

Operation: ORL
(A) ← (A) ∨ ((Ri))

Bytes: 1

Cycles: 1

ORL A,#data

Operation: ORL
(A) ← (A) ∨ #data

Bytes: 2

Cycles: 1

ORL direct,A

Operation: ORL
(direct) ← (direct) ∨ (A)

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 1 0 1 direct address

Encoding: 0 1 0 0 0 1 1 i

Encoding: 0 1 0 0 0 1 0 0 immediate data

Encoding: 0 1 0 0 0 0 1 0 direct address
Semiconductor Group 53

Instruction Set
ORL direct, #data

Operation: ORL
(direct) ← (direct) ∨ #data

Bytes: 3

Cycles: 2

Encoding: 0 1 0 0 0 0 1 1 direct address immediate data
Semiconductor Group 54

Instruction Set
ORL C, <src-bit>

Function: Logical OR for bit variables

Description: Set the carry flag if the Boolean value is a logic 1; leave the carry in its current state
otherwise. A slash (”/”) preceding the operand in the assembly language indicates
that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected. No other flags are affected.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, or OV = 0:

MOV C,P1.0 ; Load carry with input pin P1.0
ORL C,ACC.7 ; OR carry with the accumulator bit 7
ORL C,/OV ; OR carry with the inverse of OV

ORL C,bit

Operation: ORL
(C) ← (C) ∨ (bit)

Bytes: 2

Cycles: 2

ORL C,/bit

Operation: ORL
(C) ← (C) ∨ ¬ (bit)

Bytes: 2

Cycles: 2

Encoding: 0 1 1 1 0 0 1 0 bit address

Encoding: 1 0 1 0 0 0 0 0 bit address
Semiconductor Group 55

Instruction Set
POP direct

Function: Pop from stack

Description: The contents of the internal RAM location addressed by the stack pointer is read,
and the stack pointer is decremented by one. The value read is the transfer to the
directly addressed byte indicated. No flags are affected.

Example: The stack pointer originally contains the value 32H, and internal RAM locations 30H
through 32H contain the values 20H, 23H, and 01H, respectively. The instruction
sequence

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer set to 0123H.
At this point the instruction

POP SP

will leave the stack pointer set to 20H. Note that in this special case the stack pointer
was decremented to 2FH before being loaded with the value popped (20H).

Operation: POP
(direct) ← ((SP))
(SP) ← (SP) – 1

Bytes: 2

Cycles: 2

Encoding: 1 1 0 1 0 0 0 0 direct address
Semiconductor Group 56

Instruction Set
PUSH direct

Function: Push onto stack

Description: The stack pointer is incremented by one. The contents of the indicated variable is
then copied into the internal RAM location addressed by the stack pointer.
Otherwise no flags are affected.

Example: On entering an interrupt routine the stack pointer contains 09H. The data pointer
holds the value 0123H. The instruction sequence

PUSH DPL
PUSH DPH

will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM
locations 0AH and 0BH, respectively.

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (direct)

Bytes: 2

Cycles: 2

Encoding: 1 1 0 0 0 0 0 0 direct address
Semiconductor Group 57

Instruction Set
RET

Function: Return from subroutine

Description: RET pops the high and low-order bytes of the PC successively from the stack,
decrementing the stack pointer by two. Program execution continues at the
resulting address, generally the instruction immediately following an ACALL or
LCALL. No flags are affected.

Example: The stack pointer originally contains the value 0BH. Internal RAM locations 0AH
and 0BH contain the values 23H and 01H, respectively. The instruction

RET

will leave the stack pointer equal to the value 09H. Program execution will continue
at location 0123H.

Operation: RET
(PC15-8) ← ((SP))
(SP) ← (SP) – 1
(PC7-0) ← ((SP))
(SP) ← (SP) – 1

Bytes: 1

Cycles: 2

Encoding: 0 0 1 0 0 0 1 0
Semiconductor Group 58

Instruction Set
RETI

Function: Return from interrupt

Description: RETI pops the high and low-order bytes of the PC successively from the stack, and
restores the interrupt logic to accept additional interrupts at the same priority level
as the one just processed. The stack pointer is left decremented by two. No other
registers are affected; the PSW is not automatically restored to its pre-interrupt
status. Program execution continues at the resulting address, which is generally the
instruction immediately after the point at which the interrupt request was detected.
If a lower or same-level interrupt is pending when the RETI instruction is executed,
that one instruction will be executed before the pending interrupt is processed.

Example: The stack pointer originally contains the value 0BH. An interrupt was detected
during the instruction ending at location 0122H. Internal RAM locations 0AH and
0BH contain the values 23H and 01H, respectively. The instruction

RETI

will leave the stack pointer equal to 09H and return program execution to location
0123H.

Operation: RETI
(PC15-8) ← ((SP))
(SP) ← (SP) – 1
(PC7-0) ← ((SP))
(SP) ← (SP) – 1

Bytes: 1

Cycles: 2

Encoding: 0 0 1 1 0 0 1 0
Semiconductor Group 59

Instruction Set
RL A

Function: Rotate accumulator left

Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into
the bit 0 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RL A

leaves the accumulator holding the value 8BH (10001011B) with the carry
unaffected.

Operation: RL
(An + 1) ← (An) n = 0-6
(A0) ← (A7)

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 0 0 1 1
Semiconductor Group 60

Instruction Set
RLC A

Function: Rotate accumulator left through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated one bit to
the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into
the bit 0 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), and the carry is zero. The
instruction

RLC A

leaves the accumulator holding the value 8AH (10001010B) with the carry set.

Operation: RLC
(An + 1) ← (An) n = 0-6
(A0) ← (C)
(C) ← (A7)

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 0 0 1 1
Semiconductor Group 61

Instruction Set
RR A

Function: Rotate accumulator right

Description: The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into
the bit 7 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RR A

leaves the accumulator holding the value 0E2H (11100010B) with the carry
unaffected.

Operation: RR
(An) ← (An + 1) n = 0-6
(A7) ← (A0)

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 0 1 1
Semiconductor Group 62

Instruction Set
RRC A

Function: Rotate accumulator right through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated one bit to
the right. Bit 0 moves into the carry flag; the original value of the carry flag moves
into the bit 7 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), the carry is zero. The
instruction

RRC A

leaves the accumulator holding the value 62H (01100010B) with the carry set.

Operation: RRC
(An) ← (An + 1) n=0-6
(A7) ← (C)
(C) ← (A0)

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 0 1 1
Semiconductor Group 63

Instruction Set
SETB <bit>

Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any
directiy addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output port 1 has been written with the value 34H
(00110100B). The instructions

SETB C
SETB P1.0

will leave the carry flag set to 1 and change the data output on port 1 to 35H
(00110101B).

SETB C

Operation: SETB
(C) ← 1

Bytes: 1

Cycles: 1

SETB bit

Operation: SETB
(bit) ← 1

Bytes: 2

Cycles: 1

Encoding: 1 1 0 1 0 0 1 1

Encoding: 1 1 0 1 0 0 1 0 bit address
Semiconductor Group 64

Instruction Set
SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the address indicated. The branch
destination is computed by adding the signed displacement in the second
instruction byte to the PC, after incrementing the PC twice. Therefore, the range of
destinations allowed is from 128 bytes preceding this instruction to 127 bytes
following it.

Example: The label ”RELADR” is assigned to an instruction at program memory location
0123H. The instruction

SJMP RELADR

will assemble into location 0100H. After the instruction is executed, the PC will
contain the value 0123H.

Note:

Under the above conditions the instruction following SJMP will be at 102H.
Therefore, the displacement byte of the instruction will be the relative offset (0123H-
0102H) = 21H. In other words, an SJMP with a displacement of 0FEH would be a
one-instruction infinite loop.

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 0 0 rel. address
Semiconductor Group 65

Instruction Set
SUBB A, <src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the
accumulator, leaving the result in the accumulator. SUBB sets the carry (borrow)
flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before
executing a SUBB instruction, this indicates that a borrow was needed for the
previous step in a multiple precision subtraction, so the carry is subtracted from the
accumulator along with the source operand). AC is set if a borrow is needed for bit
3, and cleared otherwise. OV is set if a borrow is needed into bit 6 but not into bit 7,
or into bit 7 but not bit 6.

When subtracting signed integers OV indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a
positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-
indirect, or immediate.

Example: The accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and
the carry flag is set. The instruction

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC
cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above
result is due to the (borrow) flag being set before the operation. If the state of the
carry is not known before starting a single or multiple-precision subtraction, it should
be explicitly cleared by a CLR C instruction.

SUBB A,Rn

Operation: SUBB
(A) ← (A) – (C) – (Rn)

Bytes: 1

Cycles: 1
Semiconductor Group 66

Instruction Set
SUBB A,direct

Operation: SUBB
(A) ← (A) – (C) – (direct)

Bytes: 2

Cycles: 1

SUBB A, @ Ri

Operation: SUBB
(A) ← (A) – (C) – ((Ri))

Bytes: 1

Cycles: 1

SUBB A, #data

Operation: SUBB
(A) ← (A) – (C) – #data

Bytes: 2

Cycles: 1

Encoding: 1 0 0 1 0 1 0 1 direct address

Encoding: 1 0 0 1 0 1 1 i

Encoding: 1 0 0 1 0 1 0 0 immediate data
Semiconductor Group 67

Instruction Set
SWAP A

Function: Swap nibbles within the accumulator

Description: SWAP A interchanges the low and high-order nibbles (four-bit fields) of the
accumulator (bits 3-0 and bits 7-4). The operation can also be thought of as a four-
bit rotate instruction. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

SWAP A

leaves the accumulator holding the value 5CH (01011100B).

Operation: SWAP
(A3-0) (A7-4), (A7-4) ← (A3-0)

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 1 0 0

←→
Semiconductor Group 68

Instruction Set
XCH A, <byte>

Function: Exchange accumulator with byte variable

Description: XCH loads the accumulator with the contents of the indicated variable, at the same
time writing the original accumulator contents to the indicated variable. The source/
destination operand can use register, direct, or register-indirect addressing.

Example: R0 contains the address 20H. The accumulator holds the value 3FH (00111111B).
Internal RAM location 20H holds the value 75H (01110101B). The instruction

XCH A, @R0

will leave RAM location 20H holding the value 3FH (00111111 B) and 75H
(01110101B) in the accumulator.

XCH A,Rn

Operation: XCH
(A) (Rn)

Bytes: 1

Cycles: 1

XCH A,direct

Operation: XCH
(A) (direct)

Bytes: 2

Cycles: 1

Encoding: 1 1 0 0 1 r r r

Encoding: 1 1 0 0 0 1 0 1 direct address

←→

←→
Semiconductor Group 69

Instruction Set
XCH A, @ Ri

Operation: XCH
(A) ((Ri))

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 1 1 i

←→
Semiconductor Group 70

Instruction Set
XCHD A,@Ri

Function: Exchange digit

Description: XCHD exchanges the low-order nibble of the accumulator (bits 3-0, generally
representing a hexadecimal or BCD digit), with that of the internal RAM location
indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of
each register are not affected. No flags are affected.

Example: R0 contains the address 20H. The accumulator holds the value 36H (00110110B).
Internal RAM location 20H holds the value 75H (01110101B). The instruction

XCHD A, @ R0

will leave RAM location 20H holding the value 76H (01110110B) and 35H
(00110101B) in the accumulator.

Operation: XCHD
(A3-0) ((Ri)3-0)

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 1 1 i

←→
Semiconductor Group 71

Instruction Set
XRL <dest-byte>, <src-byte>

Function: Logical Exclusive OR for byte variables

Description: XRL performs the bitwise logical Exclusive OR operation between the indicated
variables, storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination
is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can be
accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) then the instruction

XRL A,R0

will leave the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement
combinations of bits in any RAM location or hardware register. The pattern of bits
to be complemented is then determined by a mask byte, either a constant contained
in the instruction or a variable computed in the accumulator at run-time. The
instruction

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output port 1.

XRL A,Rn

Operation: XRL2
(A) ← (A) (Rn)

Bytes: 1

Cycles: 1

Encoding: 0 1 1 0 1 r r r

v

Semiconductor Group 72

Instruction Set
XRL A,direct

Operation: XRL
(A) ← (A) (direct)

Bytes: 2

Cycles: 1

XRL A, @ Ri

Operation: XRL
(A) ← (A) ((Ri))

Bytes: 1

Cycles: 1

XRL A, #data

Operation: XRL
(A) ← (A) #data

Bytes: 2

Cycles: 1

XRL direct,A

Operation: XRL
(direct) ← (direct) (A)

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 1 0 1 direct address

Encoding: 0 1 1 0 0 1 1 i

Encoding: 0 1 1 0 0 1 0 0 immediate data

Encoding: 0 1 1 0 0 0 1 0 direct address

v

v

v

v

Semiconductor Group 73

Instruction Set
XRL direct, #data

Operation: XRL
(direct) ← (direct) #data

Bytes: 3

Cycles: 2

Encoding: 0 1 1 0 0 0 1 1 direct address immediate data

v

Semiconductor Group 74

Instruction Set
Instruction Set Summary

Arithmetic Operations

Mnemonic Description Byte Cycle

ADD A,Rn Add register to accumulator 1 1

ADD A,direct Add direct byte to accumulator 2 1

ADD A, @Ri Add indirect RAM to accumulator 1 1

ADD A,#data Add immediate data to accumulator 2 1

ADDC A,Rn Add register to accumulator with carry flag 1 1

ADDC A,direct Add direct byte to A with carry flag 2 1

ADDC A, @Ri Add indirect RAM to A with carry flag 1 1

ADDC A, #data Add immediate data to A with carry flag 2 1

SUBB A,Rn Subtract register from A with borrow 1 1

SUBB A,direct Subtract direct byte from A with borrow 2 1

SUBB A,@Ri Subtract indirect RAM from A with borrow 1 1

SUBB A,#data Subtract immediate data from A with borrow 2 1

INC A Increment accumulator 1 1

INC Rn Increment register 1 1

INC direct Increment direct byte 2 1

INC @Ri Increment indirect RAM 1 1

DEC A Decrement accumulator 1 1

DEC Rn Decrement register 1 1

DEC direct Decrement direct byte 2 1

DEC @Ri Decrement indirect RAM 1 1

INC DPTR Increment data pointer 1 2

MUL AB Multiply A and B 1 4

DIV AB Divide A by B 1 4

DA A Decimal adjust accumulator 1 1
Semiconductor Group 75

Instruction Set
Instruction Set Summary (cont’d)

Logic Operations

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 1

ANL A,@Ri AND indirect RAM to accumulator 1 1

ANL A,#data AND immediate data to accumulator 2 1

ANL direct,A AND accumulator to direct byte 2 1

ANL direct,#data AND immediate data to direct byte 3 2

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 1

ORL A,@Ri OR indirect RAM to accumulator 1 1

ORL A,#data OR immediate data to accumulator 2 1

ORL direct,A OR accumulator to direct byte 2 1

ORL direct,#data OR immediate data to direct byte 3 2

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A direct Exclusive OR direct byte to accumulator 2 1

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 1

XRL A,#data Exclusive OR immediate data to accumulator 2 1

XRL direct,A Exclusive OR accumulator to direct byte 2 1

XRL direct,#data Exclusive OR immediate data to direct byte 3 2

CLR A Clear accumulator 1 1

CPL A Complement accumulator 1 1

RL A Rotate accumulator left 1 1

RLC A Rotate accumulator left through carry 1 1

RR A Rotate accumulator right 1 1

RRC A Rotate accumulator right through carry 1 1

SWAP A Swap nibbles within the accumulator 1 1
Semiconductor Group 76

Instruction Set
Instruction Set Summary (cont’d)

Data Transfer

*) MOV A,ACC is not a valid instruction

Mnemonic Description Byte Cycle

MOV A,Rn Move register to accumulator 1 1

MOV A,direct *) Move direct byte to accumulator 2 1

MOV A,@Ri Move indirect RAM to accumulator 1 1

MOV A,#data Move immediate data to accumulator 2 1

MOV Rn,A Move accumulator to register 1 1

MOV Rn,direct Move direct byte to register 2 2

MOV Rn,#data Move immediate data to register 2 1

MOV direct,A Move accumulator to direct byte 2 1

MOV direct,Rn Move register to direct byte 2 2

MOV direct,direct Move direct byte to direct byte 3 2

MOV direct,@Ri Move indirect RAM to direct byte 2 2

MOV direct,#data Move immediate data to direct byte 3 2

MOV @Ri,A Move accumulator to indirect RAM 1 1

MOV @Ri,direct Move direct byte to indirect RAM 2 2

MOV @Ri, #data Move immediate data to indirect RAM 2 1

MOV DPTR, #data16 Load data pointer with a 16-bit constant 3 2

MOVC A,@A + DPTR Move code byte relative to DPTR to accumulator 1 2

MOVC A,@A + PC Move code byte relative to PC to accumulator 1 2

MOVX A,@Ri Move external RAM (8-bit addr.) to A 1 2

MOVX A,@DPTR Move external RAM (16-bit addr.) to A 1 2

MOVX @Ri,A Move A to external RAM (8-bit addr.) 1 2

MOVX @DPTR,A Move A to external RAM (16-bit addr.) 1 2

PUSH direct Push direct byte onto stack 2 2

POP direct Pop direct byte from stack 2 2

XCH A,Rn Exchange register with accumulator 1 1

XCH A,direct Exchange direct byte with accumulator 2 1

XCH A,@Ri Exchange indirect RAM with accumulator 1 1

XCHD A,@Ri Exchange low-order nibble indir. RAM with A 1 1
Semiconductor Group 77

Instruction Set
Instruction Set Summary (cont’d)

Boolean Variable Manipulation

Program and Machine Control

Mnemonic Description Byte Cycle

CLR C Clear carry flag 1 1

CLR bit Clear direct bit 2 1

SETB C Set carry flag 1 1

SETB bit Set direct bit 2 1

CPL C Complement carry flag 1 1

CPL bit Complement direct bit 2 1

ANL C,bit AND direct bit to carry flag 2 2

ANL C,/bit AND complement of direct bit to carry 2 2

ORL C,bit OR direct bit to carry flag 2 2

ORL C,/bit OR complement of direct bit to carry 2 2

MOV C,bit Move direct bit to carry flag 2 1

MOV bit,C Move carry flag to direct bit 2 2

ACALL addr11 Absolute subroutine call 2 2

LCALL addr16 Long subroutine call 3 2

RET Return from subroutine 1 2

RETI Return from interrupt 1 2

AJMP addr11 Absolute jump 2 2

LJMP addr16 Long iump 3 2

SJMP rel Short jump (relative addr.) 2 2

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if accumulator is zero 2 2

JNZ rel Jump if accumulator is not zero 2 2

JC rel Jump if carry flag is set 2 2

JNC rel Jump if carry flag is not set 2 2

JB bit,rel Jump if direct bit is set 3 2

JNB bit,rel Jump if direct bit is not set 3 2

JBC bit,rel Jump if direct bit is set and clear bit 3 2

CJNE A,direct,rel Compare direct byte to A and jump if not equal 3 2
Semiconductor Group 78

Instruction Set
Instruction Set Summary (cont’d)

Program and Machine Control (cont’d)

Mnemonic Description Byte Cycle

CJNE A,#data,rel Compare immediate to A and jump if not equal 3 2

CJNE Rn,#data rel Compare immed. to reg. and jump if not equal 3 2

CJNE @Ri,#data,rel Compare immed. to ind. and jump if not equal 3 2

DJNZ Rn,rel Decrement register and jump if not zero 2 2

DJNZ direct,rel Decrement direct byte and jump if not zero 3 2

NOP No operation 1 1
Semiconductor Group 79

	1 Introduction
	2 Fundamental Structure
	2.1 Differences between MYMOS (SAB 80515/80535) an...
	2.1.1 Power Saving Modes
	2.1.2 Special Function Register PCON
	2.1.3 Port Driver Circuitries
	2.1.4 The A/D Converter Input Ports
	2.1.5 A/D Converter Timings
	2.1.6 The Oscillator and Clock Circuits
	2.1.7 The VBB Pin

	3 Central Processing Unit
	3.1 General Description
	3.2 CPU Timing

	4 Memory Organization
	4.1 Program Memory
	4.2 Data Memory
	4.3 General Purpose Register
	4.4 Special Function Registers

	5 External Bus Interface
	5.1 Accessing External Memory
	5.2 PSEN, Program Store Enable
	5.3 ALE, Address Latch Enable
	5.4 Overlapping External Data and Program Memory S...

	6 System Reset
	6.1 Hardware Reset and Power-Up Reset
	6.1.1 Reset Function and Circuitries
	6.1.2 Hardware Reset Timing

	7 On-Chip Peripheral Components
	7.1 Parallel I/O
	7.1.1 Port Structures
	7.1.1.1 Digital I/O Port Circuitry (MYMOS/ACMOS)
	7.1.1.2 MYMOS Port Driver Circuitry
	7.1.1.3 ACMOS Port Driver Circuitry

	7.1.2 Port 0 and Port 2 Used as Address/Data Bus
	7.1.3 Alternate Functions
	7.1.4 Port Handling
	7.1.4.1 Port Timing
	7.1.4.2 Port Loading and Interfacing
	7.1.4.3 Read-Modify-Write Feature of Ports 0 throu...

	7.2 Serial Interfaces
	7.2.1 Operating Modes of Serial Interface
	7.2.2 Multiprocessor Communication Feature
	7.2.3 Baud Rates
	7.2.4 Detailed Description of the Operating Modes
	7.2.4.1 Mode 0, Synchronous Mode
	7.2.4.2 Mode 1, 8-Bit UART
	7.2.4.3 Mode 2, 9-Bit UART
	7.2.4.4 Mode 3, 9-Bit UART

	7.3 Timer 0 and Timer 1
	7.3.1 Mode 0
	7.3.2 Mode 1
	7.3.3 Mode 2
	7.3.4 Mode 3

	7.4 A/D Converter
	7.4.1 Function and Control
	7.4.1.1 lnitialization and Input Channel Selection...
	7.4.1.2 Start of Conversion

	7.4.2 Reference Voltages
	7.4.3 A/D Converter Timing

	7.5 Timer 2 with Additional Compare/Capture/Reload...
	7.5.1 Timer 2
	7.5.2 Compare Function of Registers CRC, CC1 to CC...
	7.5.2.1 Compare Mode 0
	7.5.2.2 Compare Mode 1
	7.5.2.3 Using Interrupts in Combination with the C...

	7.5.3 Capture Function

	7.6 Power Saving Modes
	7.6.1 Power Saving Modes of the SAB 80515/80535
	7.6.1.1 Power-Down Mode of the SAB 80515/80535

	7.6.2 Power Saving Modes of the SAB 80515/80535
	7.6.2.1 Power-Down Mode of the SAB 80C515/80C535
	7.6.2.2 Idle Mode of the SAB 80C515/80C535

	7.7 Watchdog Timer
	7.8 Oscillator and Clock Circuit
	7.8.1 Crystal Oscillator Mode
	7.8.2 Driving for External Source
	7.8.2.1 Driving the SAB 80515/80535 from External ...
	7.8.2.2 Driving the SAB 80C515/80C535 from Externa...

	7.9 System Clock Output

	8 Interrupt System
	8.1 Interrupt Structure
	8.2 Priority Level Structure
	8.3 How Interrupts are Handled
	8.4 External Interrupts
	8.5 Response Time

	9 Instruction Set
	9.1 Addressing Modes
	9.2 Introduction to the Instruction Set
	9.2.1 Data Transfer
	9.2.2 Arithmetic
	9.2.3 Logic
	9.2.4 Control Transfer

	9.3 Instruction Definitions

	10 Device Specifications

